299 research outputs found

    Precision Test of Mass Ratio Variations with Lattice-Confined Ultracold Molecules

    Full text link
    We propose a precision measurement of time variations of the proton-electron mass ratio using ultracold molecules in an optical lattice. Vibrational energy intervals are sensitive to changes of the mass ratio. In contrast to measurements that use hyperfine-interval-based atomic clocks, the scheme discussed here is model-independent and does not require separation of time variations of different physical constants. The possibility of applying the zero-differential-Stark-shift optical lattice technique is explored to measure vibrational transitions at high accuracy.Comment: 4 pages, 4 figure

    Large-Area, Low-Noise, High Speed, Photodiode-Based Fluorescence Detectors with Fast Overdrive Recovery

    Full text link
    Two large-area, low noise, high speed fluorescence detectors have been built. One detector consists of a photodiode with an area of 28 mm x 28 mm and a low noise transimpedance amplifier. This detector has a input light-equivalent spectral noise density of less than 3 pW/Hz^1/2, can recover from a large scattered light pulse within 10 us, and has a bandwidth of at least 900 kHz. The second detector consists of a 16 mm diameter avalanche photodiode and a low-noise transimpedance amplifier. This detector has an input light-equivalent spectral noise density of 0.08 pW/Hz^1/2, also can recover from a large scattered light pulse within 10 us, and has a bandwidth of 1 MHz.Comment: Submitted to Review of Scientific Instrument

    Energy Dependence of Scattering Ground State Polar Molecules

    Full text link
    We explore the total cross section of ground state polar molecules in an electric field at various energies, focusing on RbCs and RbK. An external electric field polarizes the molecules and induces strong dipolar interactions leading to non-zero partial waves contributing to the scattering even as the collision energy goes to zero. This results in the need to compute scattering problems with many different values of total M to converge the total cross section. An accurate and efficient approximate total cross section is introduced and used to study the low field temperature dependence. To understand the scattering of the polar molecules we compare a semi-classical cross section with quantum unitarity limit. This comparison leads to the ability to characterize the scattering based on the value of the electric field and the collision energy.Comment: Accepted PRA, 10 pages, 5 figure
    • …
    corecore